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Abstract

We propose an efficient procedure to solve for policy counterfactuals in linear mod-
els with occasionally binding constraints. The procedure does not require knowledge
of the structural or reduced-form equations of the model, its state variables, or its
shock processes. Forecasts of the variables entering the policy problem, and impulse
response functions of these variables to anticipated policy shocks under an arbitrary pol-
icy, constitute sufficient information to construct valid counterfactuals. We show how
to compute solutions for instrument rules and optimal discretionary and commitment
policies with multiple policy instruments, and discuss various extensions, including im-
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1 Introduction

One key use of structural macroeconomic models is the construction of counterfactual sce-

narios for the analysis of economic policies. How would the economy have behaved differently

during some historical episode had some specific policy been adopted? How will the econ-

omy likely behave in the future under the policy? The importance of such exercises needs

no motivation.

The established procedure for constructing such counterfactuals in macroeconomics in-

volves the following steps: Given a model and its parameters, filter initial conditions and

structural shocks from observable data; rewrite the model to change the behavior of policy

to the desired counterfactual; solve this new model; and compute the counterfactual equilib-

rium path using the structural shocks and initial conditions obtained in the first step. One

difficulty of this procedure is that it can quickly become computationally challenging when

the model is non-linear, in particular when occasionally binding constraints such as a lower

bound on interest rates are active. Moreover, we believe it is somewhat disconnected from

the reality of policy analysis. Central banks and other policy institutions usually do not rely

on any one model to inform their view of the economy, and instead aim to construct their

projections efficiently from a large amount of data, a variety of reduced-form and structural

models, and judgment. Also, counterfactual analyses often focus only on a small subset of the

variables contained in the medium- or large-scale models maintained by these institutions.

In this paper, we propose a novel procedure for computing policy counterfactuals that is

computationally simpler and, in our view, better adapted to the reality of policy analysis.

The procedure only requires a minimal amount of information about the model that is

directly relevant to the problem at hand. Neither the structural or reduced-form equations

of the model, its state variables, nor its shock processes need to be known. All that is

required is a set of impulse responses of a few variables of interest (say, inflation, output,

and interest rates) to anticipated future shocks about the policy instruments. These impulse

responses contain all the relevant information about the model. Also, rather than filtering
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structural shocks from many observables, the procedure operates directly on forecasts of the

few variables of interest, called projections. These impulse responses and projections are all

that is required to compute accurate counterfactual solutions.

We show how to compute solutions for instrument rules as well as optimal paths under

discretion and commitment. Importantly, we are able to compute counterfactuals not only

at one point in time but also over time as the economy is affected by shocks, even though

these shocks need not be known explicitly. The sequences of projections contain all the nec-

essary information about the shocks needed for the computation of policy counterfactuals.

Our optimal commitment solutions also honor past commitments as time moves forward,

because we establish the Marcet and Marimon (2019) recursive form of the commitment

problem directly from the impulse response representation of the model. Moreover, comput-

ing optimal discretionary policy does not require an iterative procedure like in Dennis (2007)

and is therefore no more difficult than computing optimal commitment policy; in the linear

case, it amounts to no more than inverting a single matrix.

As an illustration, we discuss how the U.S. economy may have evolved around 2015 had

the Federal Reserve adopted one of several potential interest rate rules, or optimal com-

mitment or discretionary policy. We conduct this analysis using median projections of the

economy made at that time by FOMC participants in the Survey of Economic Projections,

and impulse responses obtained from the Smets and Wouters (2007) model and a linearized

version of the FRB/US model (Brayton, 2018; Erceg, Hebden, Kiley, Lopez-Salido, and Tet-

low, 2018). We find that, for a standard choice of the loss function, the paths of policy

projected at that time were quite close to the optimal commitment policy. Had monetary

policy followed a Taylor-type rule instead, monetary policy would have been noticeably

tighter, resulting in lower inflation and higher unemployment in 2015.

Our computational procedure builds on ideas from two separate contributions in the lit-

erature. The first contribution is the work by Svensson (2005) and Svensson and Tetlow

(2005), who show how to compute optimal commitment policies that accommodate a “judg-
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mental” projection that originates outside of a particular model.1 In this paper, we also place

emphasis on the use of judgmental projections rather than filtering structural shocks, but go

beyond these earlier contributions in several ways. First, we incorporate occasionally binding

constraints efficiently. Second, our procedure is considerably faster because it is based on

precomputed impulse responses and uses only a small subset of model variables. Third, we

can compute commitment policies for sequences of changing judgmental projections while

honoring the initial state-contingent commitment. Finally, we do not confine ourselves to

optimal commitment policies, but also show how to solve for optimal discretionary policy

and simple rules.

The second contribution is the work by Holden (2016, 2019), who provides an efficient

algorithm to compute solutions to forward-looking models with occasionally binding con-

straints using impulse responses to anticipated policy shocks. We generalize his algorithm

to compute a large number of policy counterfactuals, including optimal policy under com-

mitment and discretion.

Besides providing a simple way to compute policy counterfactuals, our procedure also

facilitates the comparison of the effects of economic policies across different models, and

can thus be used to address concerns of model uncertainty. All the information needed for

such a comparison is contained in the impulse responses to anticipated shocks to the policy

instruments. If these responses are identical for two models, then any choice of policy will

yield the same outcomes (for the variables considered) in either model, thus providing a

weaker form of the “principle of counterfactual equivalence” studied by Beraja (2021).

Lucas (1976) argued that one needs to understand fundamental economic relationships

to conduct credible policy experiments. A practical insight that emerges from our analysis

is that not the entire model needs to be correctly specified for such policy experiments to

be valid. Our procedure (and, for that matter, any other solution method) can yield valid

counterfactuals even when some aspects of a model are misspecified. What is crucial is that
1See also Bersson, Hürtgen, and Paustian (2019) for a more recent implementation that honors the ELB

constraint.
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the impulse responses to anticipated monetary policy shocks are correctly specified, since

they completely summarize the ecomomy’s response to changes in policy.

Our procedure is currently limited to models that are linear up to occasionally binding

inequality constraints and quasi-perfect foresight solutions. However, it is straightforward to

extend it to higher-order perturbation approximations of non-linear models with occasionally

binding constraints and without perfect foresight using the computationally efficient methods

developed by Holden (2016).

The remainder of this paper is structured as follows. Section 2 describes the basic setup

and introduces the relevant concepts and notation. Section 3 shows how to solve for policy

counterfactuals in completely linear models. Section 4 describes how we approximate our

solutions with finite computing horizons. In Section 5, we add occasionally binding con-

straints, and in Section 6 we extend our results to a tractable case of incomplete information

that allows us to accommodate historical data revisions. A number of further extensions of

practical relevance are discussed in Section 7. Section 8 contains our application to the U.S.

economy around 2015 and Section 9 concludes.

2 Basic setup

In this section, we lay out the basic assumptions underlying our procedure and introduce

relevant notation. We start with a generic structural macroeconomic model and then show

how the two inputs into our procedure, baseline projections and impulse responses, fit within

the model. We then show that these two inputs are sufficient to obtain model solutions. To fix

some notation straight away, N is the set of integers and R is the set of real-valued numbers.

RN×n, for n ∈ N, denotes the space of vector-valued sequences (xt)
∞
t=0 with xt ∈ Rn.

We consider the class of forward-looking stochastic models that are linear except for

occasionally binding constraints that affect the conduct of policy. Time is discrete at t ∈ N,

so the model has a fixed initial period and an infinite horizon. The number of endogenous
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model variables is n. There are two types of variables: A set of p policy instruments zt ∈ Rp

which can be chosen freely by the policymaker, and a set of n − p endogenous variables

ξt ∈ Rn−p. The endogenous variables depend on k exogenous shocks ut ∈ Rk that are

uncorrelated across time and have mean zero. We group all variables save for the exogenous

shocks into one vector yt = (ξ′t, z
′
t)
′ ∈ Rn. Initial conditions y−1 are taken as given and can

also be stochastic. To keep the notation light, we simply denote with y the stochastic process

(yt)
∞
t=0. We define F as the natural filtration of the exogenous variables (y−1, u0, u1, . . . ); that

is, F = (Ft)∞t=0 with Ft the σ-algebra generated by y−1, u0,, . . . , ut.

The endogenous variables y evolve according to the system of model equations:

Φ−1yt−1 + Φ0yt + Φ1Etyt+1 + Φuut = 0 ∈ Rn−p. (1)

The matrices have size Φ−1,Φ0,Φ1 ∈ R(n−p)×n and Φu ∈ R(n−p)×k. The expectations used

throughout the paper will be defined under quasi-perfect foresight:

Etyt+s = E [yt+s | ut+s = 0, . . . , ut+1 = 0,Ft] . (2)

The imposition of quasi-perfect foresight is unnecessary when z is linear in u, because in

that case certainty equivalence applies. But it becomes important when policy instruments

are subject to non-linearities such as an effective lower bound (ELB) on interest rates. We

note that it is straightforward to extend our procedure to approximate non-perfect foresight

expectations and non-linear models using the techniques developed by Holden (2016).

The starting point for the analysis is a “baseline” solution ȳ = (ȳt)
∞
t=0: an arbitrary

stochastic process adapted to F that solves (1).2 Uniqueness of this solution is not required

at this stage. Additionally, we require knowledge of the perfect foresight expectations of

ȳ, i.e. of Etȳt+s for s, t ≥ 0. In practice, this “baseline projection” will be forecast of

the economy made by policy institutions.3 It is the first of two inputs to our procedure.
2A process ȳ is adapted to F if ȳt is a function of y−1, u0, . . . , ut. In particular, it does not depend on

other shocks such as sunspots and does not “see into the future”. See e.g. Klenke (2008) for a more precise
definition.

3This forecast may be conditional on some path for the policy instruments. Gali (2011) points out that
such conditional forecasts can suffer from an indeterminacy problem. Our procedure is valid as long as the
baseline projection is a valid solution of the model, even if it is not unique.
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Although we think of the baseline ȳ as having been generated by particular realizations of

the structural shocks u and under a particular policy regime, it is not necessary to know

these determinants of ȳ.

Next, we introduce a linear policy regime Ψyt = 0. The choice of this rule is largely

arbitrary and does not have to be related at all to the behavior of policy in the baseline or

the desired policy counterfactuals. The only requirement is that the rule in combination with

(1) yields a unique, non-explosive solution of the model, i.e. that it satisfies the Blanchard

and Kahn (1980) conditions. To this rule, we append a set of anticipated shocks:

Ψyt −
∞∑
s=0

εt−s,t = 0 ∈ Rp (3)

For t, s ≥ 0, εt−s,t ∈ Rp is a zero-mean shock that is realized at time t but anticipated

s periods in advance, i.e. Eτ [εt−s,t] = 0 for τ < t − s and Eτ [εt−s,t] = εt−s,t for τ ≥ t − s.

By assumption, the linear system of Equations (1) and (3) yields a unique solution for any

realization of shocks. It is a standard computational exercise to find the impulse response

of yt+s to εt,t+τ for s, τ ≥ 0, which we denote Msτ ∈ Rn×p. These impulse responses are

the second input to our procedure. While computing Msτ does require solving the model

and its structural equations, this needs to be done only once and under an arbitrary policy

regime. These impulse responses contain all the information about the model that is needed

to accurately compute policy counterfactuals.

Because of the linearity of (1)–(3), there exist realizations of ε that reproduce the baseline

ȳ. Taking expectations of (3), these “baseline shocks”4 ε̄ are computed as:

ε̄t,t+s = Ψ (Etȳt+s − Et−1ȳt+s)

The baseline ȳ solves (1) and (3) given ε̄ and u and this solution is unique. To define the

above shocks for t = 0, we employ the convention E−1ȳs = 0 for all s ≥ 0.

Next, we introduce a new set of “standardized policy instruments” x. For any process
4These baseline shocks are called “add factors” in Svensson and Tetlow (2005).
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(xt)
∞
t=0 ∈ RN×p that is adapted to F, we define corresponding shocks:

εt,t+s = ε̄t,t+s + Etxt+s − Et−1xt+s (4)

with the convention that E−1xs = 0 for s ≥ 0. This implies xt = Ψ (yt − ȳt). By working

with the standardized instruments x rather than the original instruments z, we can ignore

the distinction between policy instruments zt and other model variables ξt.

We can now make use of the linearity of the model and express the solution to (1) and

(3) in deviation from the baseline ȳ:

Etyt+s − Et−1yt+s = Etȳt+s − Et−1ȳt+s +
∞∑
τ=0

Msτ (Etxt+τ − Et−1xt+τ ) , t, s ≥ 0. (5)

In particular, for x = 0 we get back the baseline y = ȳ. By choosing an appropriate x, one

can use (5) to obtain solutions to (1) under any counterfactual policy regime.

Proposition 1. Consider the function F that maps stochastic processes (xt)
∞
t=0 ∈ RN×p to

stochastic processes (yt)
∞
t=0 ∈ RN×n through Equation (5). For every x adapted to F, F (x)

solves (1), and for every y that solves (1) and is adapted to F, there exists an x such that

y = F (x).

Proof. The first part of the proposition follows by construction of F : Let x be a stochastic

process adapted to F. Then we can construct shocks ε from x through (4), and then use

(5) to recover a solution to (1). For the second part, let y be a process adapted to F that

solves (1). Construct xt = Ψ (yt − ȳt). For this x, F (x) is a solution to (1). With this x and

the corresponding shock ε obtained from (4), y jointly solves (1) and (3). Because we have

assumed that (3) yields unique solutions for any combination of shocks, it has to be that

y = F (x).

The proposition implies that, in order to compute model solutions under different policy

regimes, all that is needed is knowledge of the baseline process ȳ and the impulse responses

Msτ . It is neither necessary to know the structural equations of the model, the original
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policy instruments z, nor the exogenous shock processes and their realized values. In fact, it

is possible to work only with a subset of the original model variables, as long as that subset

is sufficient to perform the computations of desired counterfactual solutions.

The Holden (2016) algorithm for imposing an ELB constraint in otherwise linear models

can be seen as a special case of our procedure. For Holden, ȳ is the unconstrained solution

to a model with a linear policy rule, and Msτ are impulse responses to anticipated shocks

to the same rule. This can then be used to compute a new solution y under the same rule

that satisfies the ELB constraint. In our paper, ȳ can instead be any solution, and M can

be obtained from a policy rule that is entirely different from the rule, if any, that was used

to generate ȳ. In addition, the desired counterfactual policy regime with solution y can also

be arbitrarily different from the one used to compute the impulse responses.

Before proceeding, additional notation will simplify the remainder of the discussion. De-

note with y(t) = (yt, Etyt+1, Etyt+2, . . . )
′the expected path of model variables at time t, and

with ŷ(t) the stacked revisions to expectations, that is:

ŷ(t) =



yt − Et−1yt

Etyt+1 − Et−1yt+1

Etyt+2 − Et−1yt+2

...


∈ RN×n

Again, E−1ys = 0 for s ≥ 0. Also, let F be the forward-shift operator, i.e. Fy(t) =

(Etyt+1, Etyt+2, Etyt+3, . . . )
′. With this additional notation, we can express the expected

path of y at time t as

y(t) = ŷ(t) + Fy(t−1) (6)

and Equation (5) can be compactly rewritten as:

ŷ(t) = ˆ̄y(t) +Mx̂(t) (7)

where the linear map M : RN×p → RN×n stacks the impulse responses Msτ for s, τ ≥ 0.
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3 Linear policy rules and linear-quadratic optimal policy

problems

In this section, we show all the basic insights of the paper using policy problems that imply

completely linear solutions, because it is the case that readers will be most familiar with.

All policy problems in this section reduce to finding a solution of the form Ωyŷ
(t) = 0

for a linear map Ωy : RN×n → RN×p. To solve this kind of problem, define a set of auxiliary

variables ut ∈ Rp through û(t) = Ωyŷ
(t) and express x̂(t) as a function of û(t) and baseline

changes:

û(t) = Ωy

(
ˆ̄y(t) +Mx̂(t)

)
⇒ x̂(t) = (ΩyM)−1

(
û(t) − Ωy ˆ̄y(t)

)
(8)

The solution of û(t) = 0 for the standardized policy instruments is:

x̂(t) = − (ΩyM)−1 Ωy ˆ̄y(t). (9)

and the endogenous variables are

ŷ(t) = ˆ̄y(t) −M (ΩyM)−1 Ωy ˆ̄y(t).

The map ΩyM : RN×p → RN×p has to be invertible to guarantee the existence of a solution.

3.1 Linear policy rules

We start with linear policy rules of the form

Ayt = 0 (10)

where A ∈ Rp×n. As an example, suppose that there is only a single instrument (p = 1), the

nominal interest rate it, and that we impose a Taylor rule that relates the nominal interest

rate to inflation πt and the output gap ygapt through the equation it = φππt + φyygapt. We

can express this in the form (10) as it − φππt − φyygapt = 0.
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We assume that agents know this condition to hold at all times in the future, so that

AEtyt+s = 0 as well. By linearity of expectations, A (Etyt+s − Et−1yt+s) = 0 as well and we

can write: 
A 0 · · ·

0 A

... . . .

 ŷ(t) = (IN ⊗ A) ŷ(t) = 0.

Define u(t) = Ωyy
(t) with Ωy = (IN ⊗ A).5 We can now proceed to find the solution through

(9). If the rule (10) implies a determinate solution, then our procedure will recover this

solution by Proposition 1. If the rule leads to indeterminacy, then the procedure will select

one possible solution.

To find the counterfactual evolution of the economy under rule (10), it is not necessary to

know the baseline projection and impulse responses for all model variables. It is sufficient to

know these objects for the variables that enter the rule. For the Taylor rule above, only the

baseline projection of, and impulse responses for inflation, the output gap and the nominal

interest rate have to be known in order to compute the counterfactual model solution. This

is true regardless of whether the underlying model is a large-scale estimated model involving

many equations and variables, or a simple three-equation New-Keynesian model.

3.2 Optimal commitment policy

Next, we consider the problem of optimal policy under commitment. The objective of the

policymaker is to minimize a quadratic loss function of the form

min
(yt,x̂(t))

∞
t=0

E0

∞∑
t=0

1

2
βty′tWyt

where β ∈ (0, 1) and the weighting matrix W ∈ Rn×n is positive semi-definite. By Propo-

sition 1, all feasible solutions to (1) available to the policymakers are given by (7) for some
5The operator ⊗ denotes the extension of the Kronecker product to infinite-dimensional vector spaces.
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process for the standardized policy instruments x̂(t). Therefore, we can write the constraints

to the optimization problem as follows:

s.t. yt = ȳt +
t∑

τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s (11)

Etx̂
(t+1) = 0. (12)

The second constraint is necessary to ensure that x̂(t) is indeed an unanticipated revision to

the policy stance, which will end up to be a function of unanticipated baseline revisions.

We aim to obtain a recursive formulation of the optimal commitment policy by applying

the Lagrangian method of Marcet and Marimon (2019) on the impulse-response based form

of the problem. The Lagrangian is:

L =
∞∑
t=0

βt

(
1

2
y′tWyt + λ′t

(
−yt + ȳt +

t∑
τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

)
+ β

∞∑
s=0

µ(t)′
s x̂

(t+1)
t+s+1

)

The first-order conditions for yt and x̂
(t)
t+s are:

0 = Wyt + λt

0 =
∞∑
τ=0

M ′
τ,sβ

t+τEtλt+τ + βtµ(t−1)
s

with the convention that µ(−1) = 0.6 Substituting out the multipliers λt, one obtains:
∞∑
τ=0

M ′
τ,sβ

τWEtyt+τ = µ(t−1)
s , s ≥ 0

One can subtract the time t− 1-expectation of this equation and get:
∞∑
τ=0

M ′
τ,sβ

τW (Etyt+τ − Et−1yt+τ ) = 0, s ≥ 0.

Combining these conditions for all s ≥ 0 yields a linear system of equations in ŷ(t):

M ′ (B ⊗W ) ŷ(t) = 0 (13)

where B = diag (1, β, β2, . . . ) and the transpose operator is defined canonically such that

M ′ : y 7→ x with xs =
∑∞

τ=0M
′
τsyτ . We can then define u(t) through û(t) = Ωyŷ

(t) with

Ωy = M ′ (B ⊗W ) and solve using (9).
6We do not optimize from a timeless perspective.
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Equation (13) constitutes a recursive formulation of the optimal commitment problem.

Remarkably, it is not necessary to carry additional Lagrange multipliers for this linear-

quadratic problem (although we will need to do so once we introduce occasionally binding

constraints later on). Because of the linearity of the first-order conditions, the response of

the optimal commitment to shocks is the same regardless of when the commitment started

and what promises are being carried from the past.

We note again that in practice, only a small subset of model variables is required in these

computations. If, for example, the weighting matrix W is such that policymakers are only

concerned with deviations of an inflation and a measure of economic activity, as is commonly

assumed in the literature, then only the baseline projection and impulse responses for these

two variables have to be known in order to be able to solve for the optimal policy.

3.3 Optimal discretionary policy

Under discretion, we can think of there being a different policymaker at every point in time

t0 that takes decisions by future policymakers as given. The policymaker minimizes the

objective function

min
(yt)
∞
t=0,

(
x̂
(t)
t0

)t0

t=0

Et

∞∑
t=t0

1

2
βty′tWyt

subject to the same constraints (11)–(12) as under the commitment problem. The difference

relative to the commitment case is that the optimization considers only losses that start

accumulating in t0, and that the policymaker can only choose the instruments at time t0,

i.e. x̂(t)t0 = Etxt0 − Et−1xt0 for 0 ≤ t ≤ t0. Future values of the instrument, and expectations

thereof, are taken as given by the policymaker.

The Lagrangian of this problem is the same as for the commitment problem, but where

the quadratic part starts summing only at t0:

Lt0 =
∞∑
t=t0

βt
(

1

2
y′tWyt

)
+
∞∑
t=0

βt

(
λ′t

(
−yt + ȳt +

t∑
τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

)
+ β

∞∑
s=0

µ(t)′
s x̂

(t+1)
t+s+1

)
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The first-order conditions for yt and x̂
(t)
t0 are:

0 = Wyt1 (t ≥ t0)− λt

0 =
∞∑
τ=0

M ′
τ,t0−tβ

t+τEtλt+τ + βtµ
(t−1)
t0−t

Combining these conditions yields:

∞∑
τ=t0−t

M ′
τ,t0−tβ

τWEtyt+τ = µ
(t−1)
t0−t

Relabeling s = t0− t, and subtracting the time t−1-expectations of the equation, we obtain:

∞∑
τ=s

M ′
τ,sβ

τW (Etyt+τ − Et−1yt+τ ) = 0

Combining these conditions for all s ≥ 0 yields again a linear system of equations in ŷ(t):

M ′
L (B ⊗W ) ŷ(t) = 0 (14)

where ML is the lower triangular part of M : ML,ts = Mts1 (t ≥ s). We can then define ut

through û(t) = Ωyŷ
(t) with Ωy = M ′

L (B ⊗W ) and solve using (9).

The optimal policy problem under discretion turns out to be no more difficult to solve

than the commitment problem. The only difference is that the lower triangular part of

M enters the matrix of first-order conditions instead of the full matrix M . This aspect

of our procedure presents a strong advantage to existing solution methods which rely on

iterative fixed-point procedures to compute discretionary policies, such as the Dennis (2007)

algorithm.

4 Finite-horizon approximation for computations

Due to the infinite horizon of the model, computing solutions requires manipulating infinite-

dimensional series which is not feasible on a computer. But, similar to Svensson (2005), the

computations are straightforward to adapt to an arbitrarily distant finite horizon , and the
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resulting solutions can approximate the true solution to arbitrary precision under general

conditions.

We start with approximations of the key model equations (6) and (7) for a fixed horizon

T < ∞. We define the finite vector of elements in y(t) up to the horizon T as y(t)0:T =(
y′t, Ety

′
t+1, . . . , Ety

′
t+T

)′ ∈ R(T+1)n. We similarly define the vectors ŷ(t), ȳ(t)0:T , ˆ̄y
(t)
0:T ∈ R(T+1)n

and x(t), x̂(t) ∈ R(T−1)p. We first approximate (6) with:

y
(t)
0:T ≈ ŷ

(t)
0:T + F̃ y

(t−1)
0:T (15)

where the finite-length forward shift operator F̃ is defined as the linear map satisfying

F̃ y
(t−1)
0:T =



Etỹt+1

...

Etỹt+T

Etỹt+T


.

Because Etỹ′t+T+1 is not stored in ỹ(t−1)0:T , we use the last available value twice.

Revisions in the expected model outcomes are related to the revisions in the standardized

instruments through an approximation of (7):

ŷ
(t)
0:T ≈ ˆ̄y

(t)
0:T + M̃x̂

(t)
0:T . (16)

The linear map M̃ : R(T+1)p → R(T+1)n is now a finite-dimensional matrix consisting of the

impulse responses of outcomes, and shocks that are anticipated to occur, up to T periods in

the future:

M̃ =


M00 · · · M0T

... . . . ...

MT0 · · · MTT

 .

All the policy problems studied in this paper can be approximated from this point onward.

For example, linear simple rules of the form (IN ⊗ A) ŷ(t) = 0 studied in the previous section

can be approximated with (IT+1 ⊗ A) ŷ
(t)
0:T = 0 , the optimal commitment problem with Ω =
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M ′ (B ⊗W ) can be approximated with Ω = M̃ ′
(
B̃ ⊗W

)
where B̃ = diag

(
1, β, β2, . . . , βT

)
,

and so on.

5 Adding occasionally binding constraints

Occasionally binding constraints can easily be added to the problems in Section 3. As

shown by Holden (2019), the resulting problems can be expressed as mixed-integer linear

programming problems. The problems in this section take the general form

Ωyŷ
(t) = Ωuû

(t) (17)

u(t) ≥ 0 (18)

Θyy
(t) + Θuu

(t) ≥ 0 (19)〈
u(t),Θyy

(t) + Θuu
(t)
〉

= 0 (20)

where 〈·, ·〉 is the product 〈x, y〉 = (x1y1, x2y2, . . . )
′. The problem involves a set of auxiliary

variables ut ∈ Rq. The maps Ωy and Ωu map into RN×n and the maps Θy and Θu map into

RN×q. Provided again that ΩyM is invertible, we can write x̂(t) as a function of û(t):

x̂(t) = (ΩyM)−1
(
Ωuû

(t) − Ωy ˆ̄y(t)
)

(21)

and use this to express y(t) as a function of u(t):

y(t) = Fy(t−1) + ŷ(t)

= Fy(t−1) + ˆ̄y(t) +M (ΩyM)−1
(
Ωu

(
u(t) − Fu(t−1)

)
− Ωy ˆ̄y(t)

)
. (22)

For the last line, we have used the relation (8) and expressed û(t) = u(t) − Fu(t−1). The

problem (17)–(20) in u(t) thus has the form of a standard linear complementarity problem

(LCP) u(t) ≥ 0, Qu(t) +m(t) ≥ 0 and
〈
u(t), Qu(t) +m(t)

〉
= 0 with

Q = ΘyM (ΩyM)−1 Ωu + Θu

m(t) = Θy

(
Fy(t−1) + ˆ̄y(t) −M (ΩyM)−1

(
ΩuFu

(t−1) + Ωy ˆ̄y(t)
))
.
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Once u(t) is solved for, one can back out x̂(t) from (8) and then ŷ(t) from (7).

The finite-dimensional approximation of this problem has the form u
(t)
0:T ≥ 0, Q̃u(t)0:T +

m
(t)
0:T ≥ 0 and

〈
u
(t)
0:T , Q̃u

(t)
0:T +m

(t)
0:T

〉
= 0 with u

(t)
0:T ,m

(t)
0:T ∈ R(T+1)q and Q̃ ∈ R(T+1)q×(T+1)q.

As noted by Holden (2016, 2019), it can be solved efficiently using mixed-integer linear

programming (MILP) methods. There are several ways to express the LCP problem in a

MILP representation. We choose the following representation:

min

u
(t)
0:T ∈ R(T+1)q

Z ∈ {0, 1}(T+1)q

T∑
t=0

u
(t)
t

s.t. u(t)0:T ≥ 0

Q̃u
(t)
0:T +m

(t)
0:T ≥ 0

u
(t)
0:T ≤ ωZ

Q̃u
(t)
0:T +m

(t)
0:T ≤ ω (1− Z) .

The constant ω has to be chosen large enough for the problem at hand. If there are multiple

solutions to the LCP problem, this representation will choose the one for which the sum of the

absolute values of u(t)0:T is minimal. When the constraint is the ELB, this roughly represents

the solution for which deviations from the unconstrained case are smallest. Referring once

again to Holden (2019), we note that finding all possible solutions to the LCP problem

without the need for choosing an appropriate scaling constant ω is also possible.

5.1 Simple rules

Adding occasionally binding constraints to simple policy rules usually takes the form of the

following conditions:

Ayt ≥ 0

Cyt ≥ 0

〈Ayt, Cyt〉 = 0
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where A,C ∈ Rp×n. This problem has the form (18)–(19) with Ωy = IN ⊗ A, Ωu = IN ⊗ Ip,

Θy = IN ⊗ C and Θu = 0.

As an example, consider again the Taylor rule it = φππt+φyygapt, but modified to respect

an ELB constraint it ≥ i. This can be expressed as it = max {i, φππt + φyygapt}. Introduce

the auxiliary variable ut ∈ R1 to write it − φππt − φyygapt + ut = 0, ut ≥ 0, it − i ≥ 0, and

(it − i)ut = 0.

A rule that responds only to negative output gaps can also be accommodated. Such

an asymmetric rule is more consistent with the Federal Reserve’s recently revised monetary

policy framework than rules that respond symmetrically to the output gap. A Taylor rule

with asymmetry and an ELB takes the form it = max {i, φππt + φy min {ygapt, 0}}. Now

introduce two auxiliary variables, i.e. ut ∈ R2, and write it − φππt + φyu2t + u1t = 0,

ut ≥ 0, it ≥ i, ygapt − u2t ≥ 0, as well as complementary slackness conditions. We include

simulations of such a rule in our application in Section 8.

5.2 Optimal policy under commitment and discretion

Let us consider the optimal commitment problem with an occasionally binding constraint:

min
(yt,x̂(t))

∞
t=0

E0

∞∑
t=0

1

2
βty′tWyt

s.t. yt = ȳt +
t∑

τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

Etx̂
(t+1) = 0

Cyt ≥ 0

with C ∈ Rq×n. Note that here, the number of inequality constraints q can be smaller, equal

or larger than the number of instruments p. The Lagrangian of this problem is:

L =
∞∑
t=0

βt

(
1

2
y′tWyt + λ′t

(
−yt + ȳt +

t∑
τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

)
+ β

∞∑
s=0

µ(t)′
s x̂

(t+1)
t+s+1 − η′tCyt

)
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The first-order conditions for yt and x̂
(t)
t+s, s ≥ 0 are:

0 = Wyt + λt − C ′ηt, t ≥ 0

0 =
∞∑
τ=0

M ′
τ,sβ

t+τEtλt+τ + βtµ(t−1)
s , s ≥ 0

and this can be combined as in Section 3:

M ′ (B ⊗W ) ŷ(t) = M ′ (B ⊗ C ′) η̂(t)

In addition, we need η(t) ≥ 0, (IT ⊗ C) y(t) ≥0 and
〈
η(t), (IT ⊗ C) y(t)

〉
to hold.

Define u(t) = η(t). Then we can express this problem in the form (18)–(20) with Ωy =

M ′ (B ⊗W ), Ωu = M ′ (B ⊗ C ′), Θy = IN ⊗ C and Θu = 0.

In the case of discretion, it is straightforward to verify that, analogously to Section 3,

the problem has the same form as under commitment, except that the map M ′ is replaced

by M ′
L in the definition of Ωy and Ωu.

Incorporating the ELB constraint into optimal policy problems can easily be achieved

by including the constraint it − i ≥ 0 the set of constraints Cyt ≥ 0. But more complex

policy problems can also be accommodated. As an example, consider an “asymmetric”

objective in which policy penalizes discounted deviations of inflation πt from some target,

normalized to zero, and of shortfalls of output from potential output so that the loss function

is E0

∑∞
t=0

1
2
βt
[
π2
t + (min (ygapt, 0))2

]
. This loss function is not quadratic, but the problem

can nevertheless be rewritten with a quadratic objective. To do so, introduce an auxiliary

variable auxt and assume that the policymaker can control this variable, so that the number

of policy instruments p is increased by one. The impulse responses of anticipated shocks to

the additional instrument are given by the identity for auxt and zero for all other variables.

Now write the loss function as E0

∑∞
t=0

1
2
βt
[
π2
t + (auxt)

2] and add the additional inequality

constraint −auxt+ygapt ≥ 0. This new problem with a quadratic loss function is equivalent

to the original one: Suppose ygapt ≥ 0, then it is possible to set auxt = 0 and therefore

minimize the term (auxt)
2 in the loss function. If ygap < 0, then the term (auxt)

2 is

minimized when auxt = ygapt.
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6 Historic revisions and measurement error

So far, we have assumed that the current state of the economy yt is perfectly observable

to the central bank. In practice, however, policymakers face a large amount of uncertainty

about how to interpret current data and even how to interpret the past. Notably, economic

data are subject to revisions that rewrite the path of history, which policymakers need to

take into account.

In this section, we extend our procedure to a tractable case of imperfect information that

is able to accommodate historic revisions of the underlying baseline projection. The economy

continues to be described by the model in (1), and solutions to the model continue to be

adapted to the filtration F describing the information of the private sector whose behavior is

described by the model. The central bank, however, possesses more limited knowledge about

the economy. Its information is described by a more restricted filtration F∗ = (F∗t )∞t=0 for

which F∗t ⊆ Ft. Policymakers have to choose the instruments zt such that they are adapted

to F∗. The central bank’s expectation is related to the full information expectation through

the relation:

E∗t yt+s = Etyt+s + e
(t)
t+s. (23)

The above equation is just an identity that defines e(t)t+s as a residual, but the term e
(t)
t+s can

be thought of as the measurement error of the central bank.

The important assumption we make is that e(t)t+s is independent of policy: The error e is

the same for every choice of the policy variables z. With this assumption, the evolution of

the economy under the central bank’s expectation is given by the following modification of

(5):

E∗t yt+s − E∗t−1yt+s = E∗t ȳt+s − E∗t−1ȳt+s +
∞∑
τ=0

Msτ

(
E∗t xt+τ − E∗t−1xt+τ

)
, t, s ≥ 0 (24)

E∗t yt−s − E∗t−1yt−s = E∗t ȳt−s − E∗t−1ȳt−s, t ≥ 0, 0 ≤ s ≤ t. (25)

To see this, note first that E∗t yt+s−E∗t ȳt+s = Etyt+s−Etȳt+s because of our assumption that

e is independent of policy, so that it is the same under the baseline ȳ and any counterfactual
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y. Thus, we have that E∗t yt+s−E∗t ȳt+s = Etyt+s−Etȳt+s. Equation (25) follows directly from

this fact. Also, because E∗t xt+s = ΨE∗t (yt+s − ȳt+s), this also implies that E∗t xt+s = Etxt+s.

Substituting these equalities into (5) yields (24).

Analogously to Section (2), we defined y
∗(t)
t+s = E∗t yt+s and collect current and future

states of the economy in y∗(t) =
(
y
∗(t)′
t , y

∗(t)′
t+1 , y

∗(t)′
t+2 , . . .

)′
. Because we now need to keep track

of changes in history as well, we also introduce y∗(t)− =
(
y
∗(t)′
0 , . . . y

∗(t)′
t−1

)′
to denote the history

of model outcomes at time t. Hats will denote revisions as before. With this notation, we

can write (24)–(25) more compactly as:

ŷ∗(t) = ˆ̄y∗(t) +Mx̂∗(t) (26)

ŷ
∗(t)
− = ˆ̄y

∗(t)
− (27)

We note that policymakers control the instruments zt. Thus, there is no uncertainty

about current or past values of these instruments: E∗t zt−s = zt−s for all t, s ≥ 0. This is

satisfied in particular for the baseline projection z̄ of the instruments.

The computations for simple policy rules and optimal policy problems are preserved

under this particular information structure. Consider the computation of outcomes under

a simple policy rule with an occasionally binding constraint, as in Section (5.1). Under

imperfect information, this requires:

AE∗t yt ≥ 0

CE∗t yt ≥ 0

〈AE∗t yt, CE∗t yt〉 = 0

As an example, consider again the Taylor rule it = max {φππt + φπygapt, i}. The in-

complete information version is it = max {φπE∗t πt + φπE
∗
t ygapt, i} . but modified to re-

spect an ELB constraint it ≥ i. This can be expressed equivalently as E∗t [it − i] ≥ 0,

E∗t [it − φππt − φπygapt] ≥ 0 and E∗t [it − i]E∗t [it − φππt − φπygapt] = 0. Note that taking

expectations over the current interest rate is possible because under E∗t , there is no uncer-

tainty over current or past instruments.
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This problem corresponds to the form

Ωyŷ
∗(t) = Ωuû

(t) (28)

u(t) ≥ 0 (29)

Θyy
∗(t) + Θuu

(t) ≥ 0 (30)〈
u(t),Θyy

∗(t) + Θuu
(t)
〉

= 0 (31)

with Ωy = IN ⊗ A, Ωu = IN ⊗ Ip, Θy = IN ⊗ C and Θu = 0. Using (26), the problem

can be solved the same way as in the full information case. The only difference is that the

baseline projection ȳ∗ can now change in history, as well. Under the simple rule, revisions in

history are the same as under the baseline, and are given by (27). That is, historic revisions

under a counterfactual policy regime move in lockstep with the corresponding revisions to

the baseline projection.

Next, consider the problem of computing optimal commitment policies with an occasional

binding constraint as in Section 5.2, but under incomplete information. Let us consider the

optimal commitment problem with an occasionally binding constraint:

min
(yt,x̂(t))

∞
t=0

E∗0

∞∑
t=0

1

2
βty′tWyt

s.t. yt = ȳt +
t∑

τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

E∗t x̂
(t+1) = 0

Cyt ≥ 0

We have simply replaced full-information expectations with incomplete information expec-

tations. The first-order conditions for yt and x
(t)
t+s, s ≥ 0 are:

0 = Wyt + λt − C ′ηt, t ≥ 0

0 =
∞∑
τ=0

M ′
τ,sβ

t+τE∗t λt+τ + βtµ(t−1)
s , s ≥ 0

Note that the fact that there is uncertainty about the past does not enter the considerations

of the optimizing policymaker. The reason is that, when history gets revised, the policy-

maker cannot rewrite the policy instruments retroactively, but can only adjust the current
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instruments, which only affect current and future economic outcomes. The problem thus

has again the same form as in Section 5.2, but where the baseline is given by ȳ∗. Again, the

central bank’s perception of the counterfactual equilibrium path under optimal policy can

now change in history, but the revisions move in lockstep with the revisions to the baseline

projection according to (27).

7 Further extensions

The computations presented so far can be extended easily in many different directions.

Here, we present three that are of particular practical interest. First, we present solutions to

problems with multiple policy instruments where the counterfactual policy regime involves

a mix of equality and inequality constraints. Second, we discuss policy regimes that have a

more complex form such as “if” statements, a situation that naturally arises in the context of

policies embedding a promise to keep interest rates low until a certain threshold of economic

conditions is met—sometimes called “outcome-based forward guidance”. Third, we show how

to compute optimal policy with commitment for a finite number of periods and discretion

thereafter, which turns out to be no more complex than the pure commitment solution.

7.1 Mixed constraints

One case that has not been covered yet is a mix of equality and inequality constraints on

the policy problem. Such a situation can arise in particular when there are multiple policy

instruments and only a subset is subject to inequality constraints; or when auxiliary variables

need to be defined in order to express the policy problem.

The general form of the problems in this section is as follows. Let û(t) be partitioned into

û
(t)
1 ∈ RT×q1 and û(t)2 ∈ RT×q2 with q1 + q2 = q. Let S1 and S2 be the canonical mappings

for which û(t) = S1û
(t)
1 + S2û

(t)
2 , i.e. S1 = IN ⊗

 Iq1

0

, S2 = IN ⊗

 0

Iq2

. Then we are

interested in computing a model solution satisfying:
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Ωyŷt = Ωuût (32)

u
(t)
1 ≥ 0 (33)

Θy1y
(t) + Θu1u

(t) ≥ 0 (34)〈
u
(t)
1 ,Θy1y

(t) + Θu1u
(t)
〉

= 0 (35)

Θy2y
(t) + Θu2u

(t) = 0 (36)

Assume again that ΩyM is invertible and write R = M (ΩyM)−1. We make use of (21) to

write

ŷ(t) = (I −RΩy) ˆ̄y(t) +RΩu

(
S1û

(t)
1 + S2û

(t)
2

)
. (37)

We now let Πij = (ΘyiRΩu + Θui)Sj for i = 1, 2. We can substitute (37) into (36) and

obtain:

0 = Θy2 (I −RΩy) ˆ̄y(t) + Π21û
(t)
1 + Π22û

(t)
2 .

This can be used to solve for û(t)2 :

û
(t)
2 = −Π−122

(
Θy2 (I −RΩy) ˆ̄y(t) + Π21û

(t)
1

)
.

Substituting this expression back into (37), we obtain:

ŷ(t) =
(
I −RΩuS2Π

−1
22 Θy2

)
(I −RΩy) ˆ̄y(t)

+RΩu

(
S1 − S2Π

−1
22 Π21

)
û
(t)
1 . (38)

Using the above expressions for û(t)2 and ŷ(t), we can express the inequality (34) in the form

Qu
(t)
1 + q(t) ≥ 0 so that (33)–(35) form a standard LCP problem in u(t)1 . The parameters Q

and q(t) are given by:

Q = Π11 − Π12Π
−1
22 Π21 (39)

q(t) = Θy1Fy
(t−1) + Θu1S2Fu

(t−1)
2

+
(
Θy1 − Π12Π

−1
22 Θy2

)
(I −RΩy) ˆ̄y(t)

−
(
Θy1RΩuS1 − Π12Π

−1
2 Π21

)
Fu

(t−1)
1 . (40)
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Again, we start with simple rules involving inequality and equality constraints. We want

to impose Ayt ≥ 0, Cyt ≥ 0, 〈Ayt, Cyt〉 = 0, and Dyt = 0. The matrices are D ∈ Rn×q1

and A,C ∈ Rn×q2 with q1 + q2 = p. We construct û(t) from û
(t)
1 = (IN ⊗D) ŷ(t) and û(t)2 =

(IN ⊗ A) ŷ(t). This has the form (32)–(35) with

Ωy = IN ⊗

 A

D

 ,Ωu = IN ⊗ Ip

Θy1 = IN ⊗ C,Θu1 = 0

Θy2 = 0,Θu2 = IN ⊗ Iq2 .

Next, we turn to the optimal commitment problem with multiple instruments and in-

equality and equality constraints:

min
(yt,x̂(t))

∞
t=0

E0

∞∑
t=0

1

2
βty′tWyt

s.t. yt = ȳt +
t∑

τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

Etx̂(t+1) = 0

Cyt ≥ 0

Dyt = 0

The Lagrangian of this problem is:

L =
∞∑
t=0

βt

(
1

2
y′tWyt + λ′t

(
−yt + ȳt +

t∑
τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

)
+ β

∞∑
s=0

µ(t)
s x̂

(t+1)
t+s+1 − η′tCyt − φ′tDyt

)

The main first-order condition is:

M ′ (B ⊗W ) ŷ(t) = M ′ (B ⊗ C ′) η̂(t) +M ′ (B ⊗D′) φ̂(t).

In addition, a solution has to satisfy (IT ⊗ C) y(t) ≥ 0, (IT ⊗D) y(t) = 0, η(t) ≥ 0 and〈
η(t), (IT ⊗ C) y(t)

〉
. Now we let u(t)1 = η(t) and u(t)2 = φ(t). This has the form in (36)–(35)
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with

Ωy = M ′ (B ⊗W ) ,Ωu = M ′
(
B ⊗

(
C ′ D′

))
Θ1 = IT ⊗ C

Θ2 = IT ⊗D.

The case of discretion has the same form, except that the map M ′ is replaced by M ′
L in the

definition of Ωy and Ωu.

7.2 Regime switching and other piecewise linear problems

While many policy problems of practical importance can be expressed in the linear-quadratic

forms with occasionally binding inequality constraints outlined so far, there are some that

fall outside this set. Prominent examples are the “threshold” rules in Bernanke, Kiley, and

Roberts (2019), where the policy rate is kept at the ELB until some condition is met, e.g.

until the cumulative shortfall of inflation since the ELB became binding is made up. These

rules consist of different regimes with switching conditions that depend on the endogenous

model variables. These kinds of problems can easily be expressed as mixed-integer linear

programming problems using methods that are well established in operational research (see,

for example, Williams, 2009).

As a simple example, consider imposing a regime-switching rule in the case of one policy

instrument under which Ayt = 0 ∈ R if Dyt ≥ 0 ∈ R and Byt = 0 ∈ R if Dyt < 0.

To express this in a MILP representation, introduce the auxiliary variable ut = Dyt. An

equivalent definition is Ωyŷ
(t) = Ωuû

(t) with Ωy = (IN ⊗D) and Ωu = IN. Using (22), we can

express y(t) in the form y(t) = Qu(t) +m(t). We can then represent the logical “if” constraints

as a mixed-integer programming problem in a similar way to the representation of the LCP
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problem in Section 5:

min

u
(t)
0:T ∈ R(T+1)q

Z ∈ {0, 1}(T+1)q

T∑
t=0

Zt

s.t. u(t) ≤ ωZ

u(t) ≥ −ω (1− Z)

(IN ⊗ A)
(
Qu(t) +m(t)

)
≤ ω (1− Z)

− (IN ⊗ A)
(
Qu(t) +m(t)

)
≤ ω (1− Z)

(IN ⊗B)
(
Qu(t) +m(t)

)
≤ ωZ

− (IN ⊗B)
(
Qu(t) +m(t)

)
≤ ωZ.

Again, the constant ω has to be chosen large enough for the problem at hand. If there

are multiple solutions to this problem, this representation will choose the one for which the

number of time periods spent in the regime Byt = 0 (corresponding to Zt = 0) is minimal.

7.3 Finite-horizon commitment

Our procedure can also be used to easily solve optimal policy problems where the commit-

ment horizon is finite, for example , when policymakers are assumed to be able to commit

to a policy for a fixed number of periods and act with discretion thereafter, or where policy

gets re-optimized in fixed intervals.

Concretely, assume that there is a succession of policymakers that take control of policy

at times (tk)
∞
k=0 with t0 = 0 and tk > tk−1 for k ≥ 1. The kth policymaker who gets in

charge of policy at tk is able to commit to a policy through the end of her term in period

tk+1 − 1 and takes policy decisions as given thereafter. The full discretionary case is nested

in this formulation for tk = k.

The kth policymaker minimizes the objective function

min
(yt)
∞
t=0,

(
x̂
(t)
tk

)t0

t=0
,...,

(
x̂
(t)
tk+1−1

)t1

t=0

Et

∞∑
t=tk

1

2
βty′tWyt
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subject to the same constraints (11)–(12) as under the full commitment problem. The

Lagrangian of this problem is:

Lk =
∞∑
t=tk

βt
(

1

2
y′tWyt

)
+
∞∑
t=0

βt

(
λ′t

(
−yt + ȳt +

t∑
τ=0

∞∑
s=0

Mt−τ,sx̂
(τ)
τ+s

)
+ β

∞∑
s=0

µ(t)′
s x̂

(t+1)
t+s+1

)
The first-order conditions for yt and x̂

(t)
t+s are:

0 = Wyt1 (t ≥ t0)− λt

0 =
∞∑
τ=0

M ′
τ,sβ

t+τEtλt+τ + βtµ(t−1)
s

Combining these conditions yields:

0 = Wyt1 (t ≥ t0)− λt

0 =
∞∑
τ=0

M ′
τ,sβ

t+τEtWyt+τ1 (t+ τ ≥ tk) + βtµ(t−1)
s

Subtracting the time t− 1-expectations of the equation, we obtain:
∞∑
τ=0

M ′
τ,sβ

τWŷ
(t)
t+τ1 (t+ τ ≥ tk) = 0

or
∞∑

τ=tk−t

M ′
τ,sβ

τW (Etyt+τ − Et−1yt+τ ) = 0

We take this first-order condition for tk ≤ t + s < tk+1 and t < tk+1. If t1 ≥ t then

the kth policymaker is not in charge anymore. Otherwise, we are considering a window of

t0− t ≤ s ≤ t1− t. Combining these conditions yields once again a linear system of equations

in ŷ(t):

M ′
ft (B ⊗W ) ŷ(t) = 0

where Mft is a blockwise lower triangular version of M . For t = 0, this map can be repre-

sented as:

Mf0 =



M0:t1−1,0:t1−1 0 0 · · ·

Mt1:t2−1,0:t1−1 Mt1:t2−1,t1:t2−1 0 · · ·

Mt2:t3−1,0:t1−1 Mt2:t3−1,t1:t2−1 Mt2:t3−1,t2:t3−1 · · ·
...

...
... . . .


.
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For t ≥ 1, the blocks have to be appropriately shifted.

We can then define ut through û(t) = Ωyŷ
(t) with Ωy = M ′

L (B ⊗W ) and solve this

problem in the presence of linear equality or inequality constraints as described previously.

The problem has the same, low degree of complexity as the full commitment solution.

8 Application

In this section, we discuss a practical application of our solution method. We compute

counterfactuals for the path of monetary policy and that of the U.S. economy around 2015

based on projections made by the members of the Board of Governors of the Federal Reserve

System and the Federal Reserve Bank presidents in their Summary of Economic Projections

(SEP). We solve for counterfactuals under some frequently used interest rate rules as well

as under optimal commitment and discretionary policies given simple loss functions. Our

simulations are carried out using either a linear version of the Federal Reserve’s FRB/US

model (Brayton, 2018) or the Smets and Wouters (2007) model.

The time around 2015 is an interesting episode of U.S. monetary policy because the

Federal Open Market Committee (FOMC) decided to raise the federal funds rate in December

2015 after holding it at a range of between 0 and 25 basis points for seven years in December

2015. In the run-up to this decision, there was considerable discussion about the appropriate

degree of “patience” in normalizing the monetary policy stance. At the same time, there also

was some discussion of proposals that U.S. monetary policy should be constrained by a

specific rule, such as the well-known Taylor (1993) rule. Our exercise can elucidate the

differences of the actual path of monetary policy at that time with the prescriptions of

frequently discussed interest rate rules or of optimal policy.

Importantly, our simulations are based not only on realized data but also on the economic

projections of policymakers. Thus, our counterfactuals are conditioned on the information

available to policymakers at that time. This is achieved without the need to filter structural

29



shocks because the projections contain all the information about expectations that is relevant

for our analysis.

8.1 Baseline projections

We use six quarterly vintages of “baseline projections” for our simulation exercises, starting

in 2014:Q4 and ending in 2016:Q1. Each baseline projection is based on the median SEP

forecast released in that quarter.7 In the SEP, participants to provide yearly projections

for the current and next two or three calendar years as well as for the “longer-run”. These

projections include real GDP growth, the unemployment rate, and headline and core PCE

inflation projections, as well as participants’ individual assumptions of the projected appro-

priate federal funds rate. The Federal Reserve’s staff uses a model-guided interpolation and

extrapolation procedure as well as current economic data to build quarterly series of these

(and other) variables.8 In particular, the paths of those variables available in the SEP are

assumed to gradually converge to the median of the SEP longer-run projections. We will

use these quarterly series as our baseline projections.9

Figure 1 shows the paths of the quarterly average of the federal funds rate, the four-

quarter change in the (headline) PCE price index, the quarterly average of the civilian

unemployment rate, as well as an unemployment gap measure, in each of our six baseline

projections. For reference, the realized historical paths of these variables are also shown. The

paths for the first three of these variables converge to the respective median longer-run SEP

projections. The unemployment gap is constructed as the difference of the unemployment

rate and an estimate of the natural rate of unemployment based on current and past median

longer-run SEP projections of the unemployment rate; in particular, it converges to zero by
7Economic projections are collected from each member of the Board of Governors and each Federal Reserve

Bank president four times a year, in connection with the FOMC meetings in March, June, September, and
December.

8The staff regularly publishes these time series along with further documentation as part of its FRB/US
model package, available at https://www.federalreserve.gov/econres/us-models-package.htm.

9The resulting projections need not represent the economic projections of the Committee or of any
Committee participant.
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Figure 1: Baseline Projections.
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longer-run projected values.

construction.

The figure reveals that between the last quarter of 2014 and the first quarter of 2016,

FOMC participants revised their projections of the U.S. economy significantly. The top left

panel shows that in 2014:Q4, the federal funds rate was expected to rise above 25 basis points

(the top of the target range at the time) in 2015:Q3. But this expected liftoff from the ELB

was pushed back until the FOMC raised the target range at its December 2015 meeting,

bringing the quarterly average of the federal funds rate above 25 basis points in 2016:Q1.

Over the same time horizon, the longer-run expectation of the federal funds rate was revised

down from 3.75 to 3.30 percent. Because longer-run inflation projections were constant at 2

percent, this implies a decline in the expected longer-run real interest rate, or r-star, of about
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half a percentage point. The top right panel documents that realized inflation surprised to the

downside multiple times, entailing downward revisions in inflation projections. In contrast,

the U.S. labor market as measured by the unemployment rate, shown in the bottom left panel,

performed better than expected. Nearly all revisions to the unemployment rate projections

are to the downside, and the unemployment rate subsequently fell even more than projected

in the 2016:Q1 baseline. Because the longer-run median U.S. of the unemployment rate,

which is the main determinant of the estimate of the natural rate of unemployment in our

baseline projections, also moved down, the unemployment rate gap in the bottom right panel

revised down by less than the unemployment rate.

8.2 Models

We use two quite different models for our simulations. The first is a linear version of the

Federal Reserve’s FRB/US model, a large-scale estimated general equilibrium model of the

U.S. economy that has been in use at the Federal Reserve Board since 1996 and has been

repeatedly adapted to the evolving the structure of the economy. The linear version, called

small FRB/US or sFRB, reduces the FRB/US model to 63 equations and endogenous vari-

ables. For the purpose of our simulations, we only simulate three of these variables, namely

the federal funds rate it, the four-quarter change in the PCE price index π4t, and the un-

employment gap ugapt, which are natively defined in the model. Thus, we only need to

compute impulse responses to these three variables.

The second model we use is the well-known Smets and Wouters (2007) (“Smets-Wouters”)

model, using the posterior mean parameters reported in the original paper. Our implemen-

tation of the model has 33 equations and endogenous variables. We make the following

translations of our data series to this model: We equate the federal funds rate with the

annualized quarterly nominal interest rate (that is, our it equals 4rt in the model) and the

four-quarter change in the PCE index with the sum of the current and last three quarters

of the quarterly inflation rate (our π4t equals
∑3

s=0 πt−s in the model). Because the Smets-
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Wouters model does not feature unemployment, we approximate the unemployment gap

with the model’s output gap through a simple Okun’s law and set Ut − U∗t = 0.5 (yt − y∗t ),

where yt and y∗t are the log-levels of output in the model under sticky and flexible prices,

respectively.

For both models, we compute impulse responses to anticipated shocks to the federal funds

rate using Dynare. It is immaterial how the policy instrument is set in the models at this

stage. We then standardize10 these impulse responses to those of shocks to the following

rule, which is an unemployment gap version of the Taylor (1993) rule:

it = r∗t + π4t + 0.5 (π4t − 2)− (Ut − U∗t ) . (41)

In addition to the three variables we simulate, the long-run level of the natural real interest

rate r∗t and the natural rate of unemployment U∗t also appear in the rule. We assume that

these two additional variables are independent of policy; thus, the impulse responses of these

variables to anticipated policy shocks are zero everywhere.

Figure 2 plots these impulse responses. The upper panels show that in the sFRB model,

inflation increases and unemployment decreases at all lags and leads following accommodative

policy shocks. Inflation is very forward-looking in this model, as inflation responds even to

policy shocks that are anticipated to occur very far in the future. At the same time, the

magnitude of the inflation response is modest, an expression of the relatively flat Phillips

curve in the sFRB model.

The dynamics of the Smets-Wouters model are noticeably different. Most visibly, inflation

responds much more strongly to policy. This is largely due to the fact that we use the original

parameters that were estimated about fifteen years ago. Since then, estimates of the slope of

the Phillips curve have decreased significantly. But the response of the unemployment gap

(approximated by one-half times the output gap) to monetary policy is also much stronger

than in the sFRB/US model, pointing to a higher sensitivity of real activity to changes in
10This standardization can be carried out using the logic presented in Section 3: Expressing the Taylor

(1993) rule in the form Ayt = 0, set Ωy = (IN ⊗A), one can compute the standardized impulse responses
M∗ from the raw impulse responses M through M∗ = M (ΩyM)

−1.
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Figure 2: Impulse Responses to Anticipated Monetary Policy Shocks.

(a) sFRB Model.

10 20 30 40 50 60 70 80

response period

10

20

30

40

50

60

70

80

s
h
o
c
k
 p

e
ri
o
d

Federal Funds Rate

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

response period

10

20

30

40

50

60

70

80

s
h
o
c
k
 p

e
ri
o
d

Inflation

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

10 20 30 40 50 60 70 80

response period

10

20

30

40

50

60

70

80

s
h
o
c
k
 p

e
ri
o
d

Unemployment Gap

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Smets-Wouters Model.
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a shock occurring in period τ (vertical axis) and fully anticipated in period 0, when the federal funds rate
is set according to the Taylor (1993) rule. Variable definitions as noted in the text. Shocks are normalized
such that at time τ , the federal funds rate decreases by one percentage point.
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interest rates. The endogenous response of the Taylor (1993) rule to the strong movements

in inflation mean that the federal funds rate increases before the realization of anticipated

accommodative policy shocks.

8.3 Counterfactuals using interest rate rule prescriptions

In our first set of simulations, we compute counterfactuals under the assumption that the

federal funds rate is set according to the prescriptions of one of the following four rules:

it = max {i, r∗t + π4t + 0.5 (π4t − 2)− (Ut − U∗t )} (42)

it = max {i, 0.85it−1 + 0.15 (r∗t + π4t + 0.5 (π4t − 2)− 2 (Ut − U∗t ))} (43)

it = max {i, 0.85it−1 + 0.15 (r∗t + π4t + 0.5 (π4t − 2)− 2 max {Ut − U∗t , 0})} (44)

it = max {i, 0.85it−1 + 0.15 (r∗t + π4t + (pt − p∗t )− 2 (Ut − U∗t ))} (45)

The first rule is the Taylor (1993) rule. The second rule is an inertial version of the Taylor

(1999) rule. The third and fourth rule are variants of the inertial Taylor (1999) rule. The

third rule is an asymmetric rule that responds only to shortfalls of employment. The fourth

rule is a price-level targeting rule that responds to the deviation of the PCE price level index

pt from a target path p∗t .11 The target path is exogenous to policy and grows at the steady

rate of 2 percent. The level is chosen such that pt = p∗t in 2014:Q3, right before the start

of our simulations. In all rules, the ELB is modeled as a hard lower bound i of 12.5 basis

points.

Figure 3 shows rules-based counterfactuals computed using the sFRB model. The econ-

omy is assumed to follow the baseline projection up to 2014:Q4. At that date, the respective

rule starts to be followed; the path of the economy as it would have been projected in that

quarter is represented by dashed lines. We then run the simulation using the sequence of

baseline projections described above. Each quarter, the projected path of the counterfactual
11For this rule, we need to compute impulse responses of pt in addition to the three variables shown in

our simulations.
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Figure 3: Rules-Based Counterfactuals in the sFRB Model.
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Note: Counterfactual simulations all start in 2014:Q4 and continue through 2016:Q1. Each line represents
past, current and future values of a variable as projected at a certain date, noted in brackets in the legend
label. 2015:Q1–2015:Q4 counterfactual projections not shown.

changes in response to the changes in the baseline projection. For brevity, we do not show

the counterfactual projections in 2015:Q1–Q4. The solid lines in the figure represent the

paths of the economy as they would have been projected in 2016:Q1.

The upper panels of Figure 3 show that the Taylor (1993) rule (42) immediately lifts the

federal funds rate off the ELB and to a level of almost 2 percent. However, the subsequent

downward surprises to inflation in the baseline projections mean that the federal funds rate

subsequently drops below 25 basis points over the course of 2015. In 2016:Q1, it stands at

just above 1.5 percent and is expected to slowly converge to its long-run level. In contrast,

the inertial Taylor (1999) rule (43) only raises the federal funds rate slowly due to its interest

rate smoothing term. Because the interest rate starts off at the ELB, this implies a somewhat

more accommodative monetary policy stance than under the Taylor (1993) rule, leading to a

lower unemployment gap. However, the outcomes for inflation are almost identical to those

under the Taylor (1993) rule. This small difference is mainly attributable to the very flat
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slope of the Phillips curve in the sFRB model.12 This flat Phillips curve also implies that, in

this model, downward inflation surprises in the baseline projection get interpreted as largely

exogenous to policy.

Both the asymmetric and the price-level targeting variants of the inertial Taylor (1999)

rule prescribe lower interest rates than the original formulation, which can be seen from

the lower panels of Figure 3. Under the asymmetric rule (44), a response to the surprising

weakness in inflation is not countered by the response to an unexpectedly rapid fall in the

unemployment rate. Indeed, the unemployment gap under this rule is much lower than under

its symmetric counterpart. In 2014:Q4, inflation is even projected to overshoot 2 percent for

some time, although this projected overshoot narrows as the baseline projection advances

to 2016:Q1. Under the price-level targeting rule (45), the federal funds rate stays low as

long as the cumulative deviation of inflation from 2 percent since the start of the simulation

is negative. This leads to an overshoot of the longer-run inflation goal in equilibrium. In

2014:Q4, this overshoot is projected to last for about four years starting around 2016. After

the negative inflation surprises through 2016:Q1, the expected onset of this overshoot is

delayed by about six quarters.

We now repeat these simulations using the Smets-Wouters model. All that is required

for this change is to switch out the impulse responses M in the computations. The resulting

counterfactual paths are displayed in Figure 4. Qualitatively, the counterfactuals retain the

features discussed in the context of the sFRB model above; however, the steeper Phillips

curve in this model means that the quantitative differences of the counterfactual outcomes

are sizable.

The upper panels of Figure 4 show simulated outcomes under the Taylor (1993) and

inertial Taylor (1999) rules. Because the Taylor (1993) rule prescribes tighter policy than

the baseline projection and the economy reacts strongly to this difference in the Smets-

Wouters model, the 2014:Q4 projection for inflation is substantially lower than in the baseline
12Another reason is that inflation is extremely forward-looking in the sFRB model, so that only very

persistent differences in interest rates meaningfully affect inflation outcomes.
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Figure 4: Rules-Based Counterfactuals in the Smets-Wouters Model.
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past, current and future values of a variable as projected at a certain date, noted in brackets in the legend
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projection, dropping to almost zero. When negative inflation surprises materialize in the

baseline projections, this lowers the inflation rate further to almost minus one percent. The

deflationary effect of adopting the Taylor (1993) rule is exacerbated by the fact that the

ELB becomes binding and constrains the rule from fully responding to lower inflation. In

2016:Q1, the federal funds rate has returned to the ELB for three quarters and is projected

to remain at the ELB for another year. By contrast, the federal funds rate stays above

the ELB throughout the simulation under the inertial Taylor (1999) rule. Just as in the

corresponding sFRB simulation, this rule prescribes more accommodative policy than the

Taylor (1993) rule, as can be seen from the higher inflation and lower unemployment gap

paths. But the path of the federal funds rate is almost uniformly higher. This is a fairly

common phenomenon in New-Keynesian models, particularly when the Phillips curve is

steep. Negative shocks to Taylor-type rules can then easily increase nominal interest rates

in equilibrium, because the systematic response of these rules to the increase in inflation is
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stronger than the shock itself.

The lower panels of Figure 4 show outcomes under the asymmetric and price-level target-

ing rules. One interesting aspect of these simulations is that, under the price-level targeting

rule, the unemployment gap decreases by less than in the corresponding simulation using

the sFRB model. Here, too, the explanation can be found in the differences in the slope of

the Phillips curve in the two models: In order to make up for a given cumulative shortfall

of inflation, policymakers in the model have to be willing to let the unemployment rate fall

by more if the Phillips curve is relatively flat.

8.4 Counterfactuals using optimal policy prescriptions

We now turn to counterfactuals when the federal funds rate is set to minimize an intertem-

poral quadratic loss function. We compute counterfactuals under full discretion and full

commitment, though intermediate cases are also feasible as noted in Section 7.3. We start

with a standard loss function that reads:

E0

∞∑
t=0

βt
[
(π4t − 2)2 + (Ut − U∗t )2 + 0.5 (it − it−1)2

]
. (46)

The loss function places equal weights on deviations of inflation from 2 percent and deviations

of the unemployment rate from the natural rate of unemployment. It also penalizes changes

in the federal funds rate, which captures a desirability of gradualism that could arise from

non-modelled elements such as financial stability considerations, committee dynamics, or

communication aspects.

In addition, we also consider an “asymmetric”loss function:

E0

∞∑
t=0

βt
[
(π4t − 2)2 + (max {Ut − U∗t , 0})

2 + 0.5 (it − it−1)2
]

(47)

This second loss function differs from the first in that it only penalizes unemployment rate

outcomes that are higher than the natural rate of unemployment. As in the simple rules

simulations, we impose a lower bound on the nominal interest rate of 12.5 basis points.
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Figure 5: Optimal Policy Counterfactuals in the sFRB Model.
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Figure 5 shows optimal policy counterfactuals computed using the sFRB model. As in

the simple rule simulations, we start the counterfactuals from the 2014:Q4 baseline projec-

tion and let the respective policy regime stay in place through 2016:Q1. In particular, the

commitment solution that starts in 2014:Q4 keeps honoring its initial contingent promises

as subsequent surprises to the baseline projection materialize.

The upper panels show optimal policy counterfactuals under the standard loss function

(46). One can see once again the notable decline of the projected federal funds rate path be-

tween the 2014:Q4 and 2016:Q1 projections, due to the downward revisions in inflation. More

noteworthy perhaps is that the outcomes under commitment and discretion are not much dif-

ferent from each other over the period shown. This small difference is not a universal feature

of the sFRB model, but rather an outcome of the particular economic circumstances pro-

jected around 2015. The desire of committed policymakers to improve on the discretionary

outcomes by promising a time-inconsistent inflation overshoot in the future is balanced by
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the cost of the unemployment rate falling persistently below the natural rate, an outcome

that is seen as costly under the loss function (46). It is notable that the projected federal

funds rate paths in these simulations are similar to the baseline projections, and therefore

to the median expectations of FOMC participants stated in the SEP at the time.

The lower panels repeat the simulations under the asymmetric loss function (47). Under

this loss function, policymakers do not see negative unemployment gaps as costly and are

therefore more willing to improve inflation outcomes than under the symmetric loss function.

Indeed, the federal funds rate paths both under discretion and commitment are lower than

their counterparts under the standard loss function, and the unemployment gap paths are

also substantially lower. Under commitment, the federal funds rate is projected to stay at the

ELB for almost two more years in 2016:Q1, a much later lift-off date than what the FOMC

implemented in reality. One can also see that this commitment policy leads to a projected

overshoot of inflation above 2 percent, which reflects the standard result in New-Keynesian

models that the optimal commitment policy tends to stabilize the price level rather than the

level of inflation.

We repeat these simulations using the Smets-Wouters model. The resulting counterfac-

tual paths are displayed in Figure 6.

The optimal discretionary and commitment policies under the standard loss function

(46), seen in the top panels of Figure 6, differ noticeably from each other in this model. In

particular, the commitment policy engineers a noticeable overshoot of inflation above two

percent in order to make up for the shortfall of inflation starting in late 2014. Such an

overshoot is absent under the discretionary policy, consistent with standard New-Keynesian

theory. The top-left panel also reveals an interesting aspect of discretionary policymaking:

The federal funds rate path stays “lower for longer” under discretion than under commitment,

yet inflation and economic activity are weaker. The causality, of course, runs the other way:

Because inflation is low and the unemployment gap is high relative to the commitment policy,

discretionary policymakers are forced to keep interest rates low. The reason why inflation
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Figure 6: Optimal Policy Counterfactuals in the Smets-Wouters Model.
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Note: Counterfactual simulations all start in 2014:Q4 and continue through 2016:Q1. Each line represents
past, current and future values of a variable as projected at a certain date, noted in brackets in the legend
label. 2015:Q1–2015:Q4 counterfactual projections not shown.

is low in the first place is that discretionary policymakers are unable to credibly promise an

inflation overshoot in the future.

The lower panels document the counterfactual optimal policy paths under the asymmetric

loss function (47). Because this loss function does not penalize unemployment rate levels

below the natural rate of unemployment, inflation runs higher than under the standard loss

function. Indeed, the unemployment gap is projected to run very low in these simulations,

especially under commitment. The moderate projected overshooting of inflation after 2016

that this policy entails is seen as an acceptable cost for raising inflation in 2015.

We close this section with an exercise illustrating the time-inconsistency problem in

monetary policy decisions. Figure 7 shows the 2016:Q1 baseline projection (solid purple

lines) along with four different optimal policy simulations with commitment using the Smets-

Wouters model and the asymmetric loss function 47.13

13This choice is made for illustrative purposes, as the difference between the policies shown are most clearly
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Figure 7: Commitment Simulations with Different Start Dates.
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Note: Start date of counterfactual simulations noted in legend labels. Each line represents past, current and
future values of a variable as projected in 2016:Q1.

In the first simulation, policy follows the path in the baseline projection until 2016:Q1,

at which point policymakers start optimizing with commitment (dotted purple lines). Be-

cause inflation in 2016:Q1 is projected to run below 2 percent for some time, the optimal

commitment policy engineers a moderate overshoot of inflation in the medium term to im-

prove inflation outcomes in the near term. In the second simulation, policymakers already

start optimizing with commitment in 2014:Q4. We compute the counterfactual path of this

policy as it responds to new information until we arrive at the projected counterfactual path

in 2016:Q1 (solid green lines). At that time, inflation already runs at almost 2.5 percent

(year-over-year) and is projected to stay above 2 percent until 2019. Policymakers intend

to raise the federal funds rate for the first time in early 2017. From the vantage point of

2016:Q1, such a policy is suboptimal because inflation is above target, but it is consistent

with the initial commitment from 2014:Q4: Promising an inflation overshoot was necessary

then to stabilize inflation in 2015.

To illustrate this point further, we also show what would happen if policymakers, after

their initial commitment in 2014:Q4, were to unexpectedly restart their commitment in

2016:Q1 (dashed green lines).14 At this point, policymakers immediately lift the federal

funds rate off the ELB. Inflation is projected to swiftly come back to 2 percent and to remain

close to this level over the period shown. Because the benefits of the initial commitment in

visible in this case. Qualitatively, the same results are obtained when using the sFRB model or the standard
loss function 46.

14To keep the simulations comparable, we assume that policymakers drop their initial commitment without
suffering a loss of credibility.
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terms of inflation stabilization have already been reaped, policymakers find it beneficial to

renege on the promised inflation overshoot.

9 Conclusion

In this paper, we have proposed a computational procedure to solve for policy counterfac-

tuals in linear models with occasionally binding constraints. The procedure requires only

minimal knowledge of the structural model. The only two inputs are a projection, or se-

quences of projections, of the variables entering the policy problem; and impulse response

functions of these variables to the monetary policy instruments under an arbitrary policy.

We have shown how to compute solutions for instrument rules and optimal discretionary

and commitment policies, as well as various extensions of practical relevance, and provided

a practical application to counterfactual paths of the U.S. economy around 2015 for several

policy regimes and models.

There are several directions in which our findings could be extended in future work.

First, while we are currently restricted to models that are linear up to occasionally binding

constraints and quasi-perfect foresight expectations, one can apply the methods described

by Holden (2016) to extend our method to higher-order perturbation approximations of non-

linear models without perfect foresight. Second, we implicitly assume that the counterfactual

policy regimes we compute satisfy the Blanchard-Kahn conditions in the absence of inequality

constraints, but our procedure could also be used to study sunspot solutions. Third, it seems

worthwhile to use the representation of a model by its impulse responses to construct formal

measures of similarity between different models.
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